Skip to main content

Outer Product

Let A\boldsymbol{A} and B\boldsymbol{B} be n×1n \times 1-matrices.

The matrix product of

M=ABT\boldsymbol{M}= \boldsymbol{A} \boldsymbol{B}^T

is called the outer product ([📖LLM21, p. 133]) of A\boldsymbol{A} and B\boldsymbol{B}.

Each entry Mij\boldsymbol{M}_{ij} corresponds to the product of the iith entry of A\boldsymbol{A} and the jjth entry of B\boldsymbol{B}:

Mij=AiBj\boldsymbol{M}_{ij} = A_i B_j

Example

(a1a2)(b1b2)=(a1b1a1b2a2b1a2b2)\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix}b_1 & b_2\end{pmatrix} = \begin{pmatrix} a_1 b_1 & a_1 b_2 \\ a_2 b_1 & a_2 b_2\end{pmatrix}

References

  1. [LLM21]: Lay, David and Lay, Steven and McDonald, Judi: Linear Algebra and Its Applications Global Edition (2021), Pearson Deutschland [BibTeX]