Skip to main content

Coordinate Vector (Linear Algebra)

Let B={b1,b2,,bn}B = \{\vec{b_1}, \vec{b_2}, \ldots, \vec{b_n}\} be a basis for the vector space V=RnV = \mathbb{R}^n.

Then, every vector xV\vec{x} \in V can be written uniquely as a linear combination:

x=c1b1+c2b2++cnbnx = c_1 \vec{b_1} + c_2 \vec{b_2} + \ldots + c_n \vec{b_n}

The vector

[x]B=(c1c2cn) [\vec{x}]_B = \begin{pmatrix}c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}

is then called the coordinate vector[📖LLM21, p. 256] of x\vec{x} relative to B.


References

  1. [LLM21]: Lay, David and Lay, Steven and McDonald, Judi: Linear Algebra and Its Applications Global Edition (2021), Pearson Deutschland [BibTeX]