Geometric Interpretation of Change of Basis Standard Basis and Identity Matrix
Let u ⃗ , v ⃗ , w ⃗ \vec{u}, \vec{v}, \vec{w} u , v , w be the orthonormal vectors of the standard basis in R 3 \mathbb{R}^3 R 3
u ⃗ = ( 1 0 0 ) v ⃗ = ( 0 1 0 ) w ⃗ = ( 0 0 1 ) \begin{alignat*}{3}
\vec{u} &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\\
\vec{v} &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\\
\vec{w} &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\\
\end{alignat*} u v w = 1 0 0 = 0 1 0 = 0 0 1
Let p ⃗ = ( p x p y p z ) \vec{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} p = p x p y p z be an arbitrary vector in R 3 \mathbb{R}^3 R 3 .
We can write p ⃗ \vec{p} p as the matrix-vector product A p ⃗ = p ⃗ \boldsymbol{A} \vec{p} = \vec{p} A p = p , where A \boldsymbol{A} A is a 3 × 3 3 \times 3 3 × 3 matrix whose rows represent the vectors u ⃗ , v ⃗ , w ⃗ \vec{u}, \vec{v}, \vec{w} u , v , w :
( 1 0 0 0 1 0 0 0 1 ) ( p x p y p z ) = ( u ⃗ ⋅ p ⃗ v ⃗ ⋅ p ⃗ w ⃗ ⋅ p ⃗ ) ( p x p y p z ) \begin{alignat*}{3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \end{pmatrix}\begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix} = \begin{pmatrix} \vec{u} \cdot \vec{p} \\ \vec{v} \cdot \vec{p} \\ \vec{w} \cdot \vec{p} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix}
\end{alignat*} 1 0 0 0 1 0 0 0 1 p x p y p z = u ⋅ p v ⋅ p w ⋅ p p x p y p z
It is clear that the resulting components represent the scalar projections of p ⃗ \vec{p} p onto the axes of the standard basis.
These projections can be used to reconstruct p ⃗ \vec{p} p as a linear combination of the basis vectors:
Since
( u ⃗ ⋅ p ⃗ ) u ⃗ = ( u ⃗ ⋅ p ⃗ ∣ u ⃗ ∣ 2 ) u ⃗ = ( u ⃗ ⋅ p ⃗ 1 ) u ⃗ = ( p x ) u ⃗ = ( p x , 0 , 0 ) T (\vec{u} \cdot \vec{p}) \vec{u} = (\frac{\vec{u} \cdot \vec{p}}{|\vec{u}|^2}) \vec{u} = (\frac{\vec{u} \cdot \vec{p}}{1}) \vec{u} = (p_x) \vec{u} = (p_x, 0, 0)^T ( u ⋅ p ) u = ( ∣ u ∣ 2 u ⋅ p ) u = ( 1 u ⋅ p ) u = ( p x ) u = ( p x , 0 , 0 ) T
and Analogusly for v ⃗ , w ⃗ \vec{v}, \vec{w} v , w , we rewrite p ⃗ \vec{p} p
p = ( u ⃗ ⋅ p ⃗ ) u ⃗ + ( v ⃗ ⋅ p ⃗ ) v ⃗ + ( w ⃗ ⋅ p ⃗ ) w ⃗ = ( p x 0 0 ) + ( 0 p y 0 ) + ( 0 0 p z ) = ( p x p y p z ) p = (\vec{u} \cdot \vec{p}) \vec{u} + (\vec{v} \cdot \vec{p}) \vec{v} + (\vec{w} \cdot \vec{p}) \vec{w} = \begin{pmatrix}p_x \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix}0 \\ p_y \\ 0 \end{pmatrix} +\begin{pmatrix}0 \\ 0 \\ p_z \end{pmatrix} = \begin{pmatrix}p_x \\ p_y\\ p_z \end{pmatrix} p = ( u ⋅ p ) u + ( v ⋅ p ) v + ( w ⋅ p ) w = p x 0 0 + 0 p y 0 + 0 0 p z = p x p y p z
This construction generalizes to any orthonormal basis, as we show next.
Change of Basis with Orthonormal Axes
Claim :
Let A ∈ R 3 × 3 \boldsymbol{A} \in \mathbb{R}^{3 \times 3} A ∈ R 3 × 3 be a matrix whose rows are vectors u ⃗ , v ⃗ , w ⃗ \vec{u}, \vec{v}, \vec{w} u , v , w such that:
∣ u ⃗ ∣ = ∣ v ⃗ ∣ = ∣ w ⃗ ∣ = 1 u ⃗ ⋅ v ⃗ = 0 u ⃗ ⋅ w ⃗ = 0 v ⃗ ⋅ w ⃗ = 0 \begin{alignat*}{3}
&|\vec{u}| = |\vec{v}| = |\vec{w}| = 1 \\
& \vec{u} \cdot \vec{v} = 0 \\
& \vec{u} \cdot \vec{w} = 0 \\
& \vec{v} \cdot \vec{w} = 0
\end{alignat*} ∣ u ∣ = ∣ v ∣ = ∣ w ∣ = 1 u ⋅ v = 0 u ⋅ w = 0 v ⋅ w = 0
Then { u ⃗ , v ⃗ , w ⃗ } \{ \vec{u}, \vec{v}, \vec{w} \} { u , v , w } form an orthonormal basis of R 3 \mathbb{R}^3 R 3 , and for any vector p ⃗ \vec{p} p , the matrix-vector product
A p = p ′ \boldsymbol{A}p = p' A p = p ′
returns the scalar projections of p ⃗ \vec{p} p onto the basis vectors.
Proof by Scalar Products:
Computing the product
( u x u y u z v x v y v z w x w y w z ) ( p x p y p z ) \begin{alignat*}{3}
\begin{pmatrix}
u_x & u_y & u_z \\
v_x & v_y & v_z \\
w_x & w_y & w_z \end{pmatrix}\begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix} \end{alignat*} u x v x w x u y v y w y u z v z w z p x p y p z
yields the vector
p ′ = ( u x p x + u y p y + u z p z v x p x + v y p y + v z p z w x p x + w y p y + w z p z ) = ( u ⃗ ⋅ p ⃗ v ⃗ ⋅ p ⃗ w ⃗ ⋅ p ⃗ ) p' = \begin{pmatrix}
u_x p_x + u_y p_y + u_z p_z \\
v_x p_x + v_y p_y + v_z p_z \\
w_x p_x + w_y p_y + w_z p_z \end{pmatrix} = \begin{pmatrix} \vec{u} \cdot \vec{p} \\ \vec{v} \cdot \vec{p} \\ \vec{w} \cdot \vec{p}\end{pmatrix} p ′ = u x p x + u y p y + u z p z v x p x + v y p y + v z p z w x p x + w y p y + w z p z = u ⋅ p v ⋅ p w ⋅ p
Each component b ⃗ i ⋅ p ⃗ \vec{b}_i \cdot \vec{p} b i ⋅ p is the scalar projection of p ⃗ \vec{p} p onto the basis vector b ⃗ i \vec{b}_i b i .
Intuitively, the components in the resulting vector p ′ p' p ′ show the scalar amount the component are showing into the respective direction.
To confirm that these projections are aligned with the original basis vectors, we rewrite:
p ⃗ = ( u ⃗ ⋅ p ⃗ ) u ⃗ + ( v ⃗ ⋅ p ⃗ ) v ⃗ + ( w ⃗ ⋅ p ⃗ ) w ⃗ \vec{p} = (\vec{u} \cdot \vec{p}) \vec{u} + (\vec{v} \cdot \vec{p}) \vec{v} + (\vec{w} \cdot \vec{p}) \vec{w} p = ( u ⋅ p ) u + ( v ⋅ p ) v + ( w ⋅ p ) w
Taking the dot product with any basis vector isolates its contribution:
p ′ ⋅ u ⃗ = ( u ⃗ ⋅ p ⃗ ) ( u ⃗ ⋅ u ⃗ ) + ( v ⃗ ⋅ p ⃗ ) ( v ⃗ ⋅ u ⃗ ) + ( w ⃗ ⋅ p ⃗ ) ( w ⃗ ⋅ u ⃗ ) = ( u ⃗ ⋅ p ⃗ ) ( 1 ) + ( v ⃗ ⋅ p ⃗ ) ( 0 ) + ( w ⃗ ⋅ p ⃗ ) ( 0 ) = u ⃗ ⋅ p ⃗ \begin{alignat*}{3}
p' \cdot \vec{u} &= (\vec{u} \cdot \vec{p})(\vec{u} \cdot \vec{u}) + (\vec{v} \cdot \vec{p})(\vec{v} \cdot \vec{u}) + (\vec{w} \cdot \vec{p})(\vec{w} \cdot \vec{u})\\
&= (\vec{u} \cdot \vec{p})(1) + (\vec{v} \cdot \vec{p})(0) + (\vec{w} \cdot \vec{p})(0) \\
& = \vec{u} \cdot \vec{p}
\end{alignat*} p ′ ⋅ u = ( u ⋅ p ) ( u ⋅ u ) + ( v ⋅ p ) ( v ⋅ u ) + ( w ⋅ p ) ( w ⋅ u ) = ( u ⋅ p ) ( 1 ) + ( v ⋅ p ) ( 0 ) + ( w ⋅ p ) ( 0 ) = u ⋅ p
Analogously for v ⃗ \vec{v} v and w ⃗ \vec{w} w .
Thus, the vector p ⃗ ′ = A p ⃗ \vec{p}' = \boldsymbol{A} \vec{p} p ′ = A p contains exactly the scalar projections of p ⃗ \vec{p} p onto the axes of the new orthonormal basis, and the original vector can be reconstructed as a linear combination of the basis vectors scaled by those projections. □ \Box □
Updates :
dd.mm.yyyy Initial publication.