Skip to main content

Geometric Interpretation of Change of Basis

Standard Basis and Identity Matrix

Let u,v,w\vec{u}, \vec{v}, \vec{w} be the orthonormal vectors of the standard basis in R3\mathbb{R}^3

u=(100)v=(010)w=(001)\begin{alignat*}{3} \vec{u} &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\\ \vec{v} &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\\ \vec{w} &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\\ \end{alignat*}

Let p=(pxpypz)\vec{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} be an arbitrary vector in R3\mathbb{R}^3.

We can write p\vec{p} as the matrix-vector product Ap=p\boldsymbol{A} \vec{p} = \vec{p}, where A\boldsymbol{A} is a 3×33 \times 3 matrix whose rows represent the vectors u,v,w\vec{u}, \vec{v}, \vec{w}:

(100010001)(pxpypz)=(upvpwp)(pxpypz)\begin{alignat*}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix} = \begin{pmatrix} \vec{u} \cdot \vec{p} \\ \vec{v} \cdot \vec{p} \\ \vec{w} \cdot \vec{p} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix} \end{alignat*}

It is clear that the resulting components represent the scalar projections of p\vec{p} onto the axes of the standard basis.

These projections can be used to reconstruct p\vec{p} as a linear combination of the basis vectors:

Since

(up)u=(upu2)u=(up1)u=(px)u=(px,0,0)T(\vec{u} \cdot \vec{p}) \vec{u} = (\frac{\vec{u} \cdot \vec{p}}{|\vec{u}|^2}) \vec{u} = (\frac{\vec{u} \cdot \vec{p}}{1}) \vec{u} = (p_x) \vec{u} = (p_x, 0, 0)^T

and Analogusly for v,w\vec{v}, \vec{w}, we rewrite p\vec{p}

p=(up)u+(vp)v+(wp)w=(px00)+(0py0)+(00pz)=(pxpypz)p = (\vec{u} \cdot \vec{p}) \vec{u} + (\vec{v} \cdot \vec{p}) \vec{v} + (\vec{w} \cdot \vec{p}) \vec{w} = \begin{pmatrix}p_x \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix}0 \\ p_y \\ 0 \end{pmatrix} +\begin{pmatrix}0 \\ 0 \\ p_z \end{pmatrix} = \begin{pmatrix}p_x \\ p_y\\ p_z \end{pmatrix}

This construction generalizes to any orthonormal basis, as we show next.

Change of Basis with Orthonormal Axes

Claim: Let AR3×3\boldsymbol{A} \in \mathbb{R}^{3 \times 3} be a matrix whose rows are vectors u,v,w\vec{u}, \vec{v}, \vec{w} such that:

u=v=w=1uv=0uw=0vw=0\begin{alignat*}{3} &|\vec{u}| = |\vec{v}| = |\vec{w}| = 1 \\ & \vec{u} \cdot \vec{v} = 0 \\ & \vec{u} \cdot \vec{w} = 0 \\ & \vec{v} \cdot \vec{w} = 0 \end{alignat*}

Then {u,v,w}\{ \vec{u}, \vec{v}, \vec{w} \} form an orthonormal basis of R3\mathbb{R}^3, and for any vector p\vec{p}, the matrix-vector product

Ap=p\boldsymbol{A}p = p'

returns the scalar projections of p\vec{p} onto the basis vectors.

Proof by Scalar Products:

Computing the product

(uxuyuzvxvyvzwxwywz)(pxpypz)\begin{alignat*}{3} \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix}\begin{pmatrix} p_x \\ p_y \\ p_z\end{pmatrix} \end{alignat*}

yields the vector

p=(uxpx+uypy+uzpzvxpx+vypy+vzpzwxpx+wypy+wzpz)=(upvpwp)p' = \begin{pmatrix} u_x p_x + u_y p_y + u_z p_z \\ v_x p_x + v_y p_y + v_z p_z \\ w_x p_x + w_y p_y + w_z p_z \end{pmatrix} = \begin{pmatrix} \vec{u} \cdot \vec{p} \\ \vec{v} \cdot \vec{p} \\ \vec{w} \cdot \vec{p}\end{pmatrix}

Each component bip\vec{b}_i \cdot \vec{p} is the scalar projection of p\vec{p} onto the basis vector bi\vec{b}_i.

Intuitively, the components in the resulting vector pp' show the scalar amount the component are showing into the respective direction.

To confirm that these projections are aligned with the original basis vectors, we rewrite:

p=(up)u+(vp)v+(wp)w\vec{p} = (\vec{u} \cdot \vec{p}) \vec{u} + (\vec{v} \cdot \vec{p}) \vec{v} + (\vec{w} \cdot \vec{p}) \vec{w}

Taking the dot product with any basis vector isolates its contribution:

pu=(up)(uu)+(vp)(vu)+(wp)(wu)=(up)(1)+(vp)(0)+(wp)(0)=up\begin{alignat*}{3} p' \cdot \vec{u} &= (\vec{u} \cdot \vec{p})(\vec{u} \cdot \vec{u}) + (\vec{v} \cdot \vec{p})(\vec{v} \cdot \vec{u}) + (\vec{w} \cdot \vec{p})(\vec{w} \cdot \vec{u})\\ &= (\vec{u} \cdot \vec{p})(1) + (\vec{v} \cdot \vec{p})(0) + (\vec{w} \cdot \vec{p})(0) \\ & = \vec{u} \cdot \vec{p} \end{alignat*}

Analogously for v\vec{v} and w\vec{w}.

Thus, the vector p=Ap\vec{p}' = \boldsymbol{A} \vec{p} contains exactly the scalar projections of p\vec{p} onto the axes of the new orthonormal basis, and the original vector can be reconstructed as a linear combination of the basis vectors scaled by those projections. \Box


Updates:

  • dd.mm.yyyy Initial publication.